
Using vcpkg at work

to manage your

C++ libraries

Augustin Popa

@augustin_popa

Program Manager

Microsoft C++ Team

https://twitter.com/augustin_popa

What is vcpkg?

Open source C++ library manager for

Windows, Linux, and macOS

1300+ popular open source libraries

available as recipes (ports):

Built from source on-demand

Centralized, tested catalog

https://github.com/microsoft/vcpkg

https://github.com/microsoft/vcpkg

vcpkg catalog count

Terminology:

A port is a recipe for building a library

A triplet describes the build configuration

(target architecture, OS, etc)

The triplets on the right are provided by

default – but custom ones can also be

defined

Why vcpkg?

1. Automate the process of building your dependencies to save time

2. No need to worry about dependencies of dependencies – vcpkg

will acquire them automatically

3. Regardless of which libraries you install, they will work together –

vcpkg routinely builds the entire catalog to test it

4. Provides a simple, repeatable way to acquire dependencies across

multiple environments (developer machines, CI, containers)

How to get started

1. git clone https://github.com/microsoft/vcpkg

2. cd vcpkg

3. Run bootstrap-vcpkg.bat (Windows) or bootstrap-vcpkg.sh
(Linux/macOS)

4. (Optional) If using with Visual Studio or Visual Studio Code

vcpkg integrate install

5. vcpkg install <lib1> <lib2> <lib3>

https://github.com/microsoft/vcpkg

Demo

Getting started with vcpkg

Integrating vcpkg with a build system

 MSBuild – run vcpkg integrate install
 Makes vcpkg installed libraries available to MSBuild automatically

 CMake – reference vcpkg CMake toolchain file
 [vcpkg-install-path]/vcpkg/scripts/buildsystems/vcpkg.cmake

 If you run vcpkg integrate install and are using Visual Studio, the toolchain file is

referenced automatically for you

Working with triplets – Examples

vcpkg install openssl:x64-windows-static

Installs static version of OpenSSL for Windows x64 architectures

vcpkg install sqlite3:x64-linux-dynamic

-–overlay-triplets=custom-triplets

Installs sqlite3 by following a user-defined build recipe located in the

custom-triplets subfolder. The triplet file looks like this:

~/git/custom-triplets/x64-linux-dynamic.cmake
set(VCPKG_TARGET_ARCHITECTURE x64)
set(VCPKG_CRT_LINKAGE dynamic)
set(VCPKG_LIBRARY_LINKAGE dynamic)
set(VCPKG_CMAKE_SYSTEM_NAME Linux)

Exporting vcpkg libraries

vcpkg export <pkg1> <pkg2> … --[options]

Available options:
 --zip

 --7zip

 --nuget

 --raw [uncompressed folder]

Example: vcpkg export cpprestsdk zlib –nuget

Produces a NuGet package containing cpprestsdk, zlib, and their

dependencies that can be used with MSBuild projects/Visual Studio

Coming next to vcpkg…

Product roadmap and

feature specifications

https://aka.ms/vcpkg/roadmap

We want your input!

https://aka.ms/vcpkg/roadmap

Binary caching (learn more)

 The good: vcpkg builds from source, so it can produce tailored,

compatible binaries for consumption

 The bad: vcpkg builds from source, so it takes a while to install

packages for the first time on each machine

 Solution: Binary caching

 The first time a library is installed, cache binaries in a known location

that can be shared across machines/environments

 Basic example: .zip files in a file-based archive

https://github.com/microsoft/vcpkg/pull/11204

Binary caching on a NuGet server

Binary caching will also work with existing NuGet servers like Azure Artifact Storage

Note: though storage format is NuGet, packages cannot be consumed directly into MSBuild projects

(use vcpkg export command instead)

Versioning (learn more)

 The good: vcpkg gives you a set of libraries that will work together

without the user having to know which versions are compatible

 The bad: the user doesn’t easily control the version of a library

vcpkg gives them

 Solution: Versioning support

 Allows developers to request specific library versions

vcpkg install package zlib@1.2.11:x64-windows

https://github.com/microsoft/vcpkg/pull/11758

Package search by version

vcpkg search zlib --show-versions

zlib 1.2.11 A compression library

zlib 1.2.10 A compression library

zlib 1.2.8 A compression library

Search feature will be able to show available package versions

Manifest file: vcpkg.json (learn more)

 Problem: How to achieve consistency?
 Multiple developers on a team need the same dependencies acquired exactly the same way

 CI builds need to happen exactly the same way as local developer machine builds

 Consumers of open source software need to rebuild it the same way as the maintainers

 Solution: vcpkg will support a manifest file called vcpkg.json

 Allows developers to specify libraries, library metadata, library

versions, and more

https://github.com/microsoft/vcpkg/blob/master/docs/specifications/manifests.md

vcpkg.json example
{

"name": "pango",

"version": "1.40.11",

"port-version": 6,

"homepage": "https://ftp.gnome.org/pub/GNOME/sources/pango/",

"description": "Text and font handling library.",

"dependencies": [

"glib",

"gettext",

"cairo",

"fontconfig",

"freetype",

{

"name": "harfbuzz",

"features": ["glib"],

"platform": {

"and": [

{ "not": { "and": ["windows", "static"] } },

{ "not": "osx" }] } }]

}

Bring your own libraries to vcpkg – package federation

 Eventually, vcpkg.json will allow the user to specify other libraries not

found in the vcpkg catalog

 This can include private/internal libraries and custom forks

 Developers will be able to define their own vcpkg ports for use

across their organization

Visual Studio / Visual Studio Code integration

 We will ship vcpkg inside the Visual Studio IDE (if a C++ workload

is installed)

 We will ship vcpkg inside the Visual Studio Code C++ extension

 More integration with these tools will be considered over time

Learn more

 vcpkg product roadmap & specs: https://aka.ms/vcpkg/roadmap
 We are looking for feedback!

 Get started with vcpkg: https://github.com/microsoft/vcpkg

https://aka.ms/vcpkg/roadmap
https://github.com/microsoft/vcpkg

