
Using vcpkg at work

to manage your

C++ libraries

Augustin Popa

@augustin_popa

Program Manager

Microsoft C++ Team

https://twitter.com/augustin_popa

What is vcpkg?

Open source C++ library manager for

Windows, Linux, and macOS

1300+ popular open source libraries

available as recipes (ports):

Built from source on-demand

Centralized, tested catalog

https://github.com/microsoft/vcpkg

https://github.com/microsoft/vcpkg

vcpkg catalog count

Terminology:

A port is a recipe for building a library

A triplet describes the build configuration

(target architecture, OS, etc)

The triplets on the right are provided by

default – but custom ones can also be

defined

Why vcpkg?

1. Automate the process of building your dependencies to save time

2. No need to worry about dependencies of dependencies – vcpkg

will acquire them automatically

3. Regardless of which libraries you install, they will work together –

vcpkg routinely builds the entire catalog to test it

4. Provides a simple, repeatable way to acquire dependencies across

multiple environments (developer machines, CI, containers)

How to get started

1. git clone https://github.com/microsoft/vcpkg

2. cd vcpkg

3. Run bootstrap-vcpkg.bat (Windows) or bootstrap-vcpkg.sh
(Linux/macOS)

4. (Optional) If using with Visual Studio or Visual Studio Code

vcpkg integrate install

5. vcpkg install <lib1> <lib2> <lib3>

https://github.com/microsoft/vcpkg

Demo

Getting started with vcpkg

Integrating vcpkg with a build system

 MSBuild – run vcpkg integrate install
 Makes vcpkg installed libraries available to MSBuild automatically

 CMake – reference vcpkg CMake toolchain file
 [vcpkg-install-path]/vcpkg/scripts/buildsystems/vcpkg.cmake

 If you run vcpkg integrate install and are using Visual Studio, the toolchain file is

referenced automatically for you

Working with triplets – Examples

vcpkg install openssl:x64-windows-static

Installs static version of OpenSSL for Windows x64 architectures

vcpkg install sqlite3:x64-linux-dynamic

-–overlay-triplets=custom-triplets

Installs sqlite3 by following a user-defined build recipe located in the

custom-triplets subfolder. The triplet file looks like this:

~/git/custom-triplets/x64-linux-dynamic.cmake
set(VCPKG_TARGET_ARCHITECTURE x64)
set(VCPKG_CRT_LINKAGE dynamic)
set(VCPKG_LIBRARY_LINKAGE dynamic)
set(VCPKG_CMAKE_SYSTEM_NAME Linux)

Exporting vcpkg libraries

vcpkg export <pkg1> <pkg2> … --[options]

Available options:
 --zip

 --7zip

 --nuget

 --raw [uncompressed folder]

Example: vcpkg export cpprestsdk zlib –nuget

Produces a NuGet package containing cpprestsdk, zlib, and their

dependencies that can be used with MSBuild projects/Visual Studio

Coming next to vcpkg…

Product roadmap and

feature specifications

https://aka.ms/vcpkg/roadmap

We want your input!

https://aka.ms/vcpkg/roadmap

Binary caching (learn more)

 The good: vcpkg builds from source, so it can produce tailored,

compatible binaries for consumption

 The bad: vcpkg builds from source, so it takes a while to install

packages for the first time on each machine

 Solution: Binary caching

 The first time a library is installed, cache binaries in a known location

that can be shared across machines/environments

 Basic example: .zip files in a file-based archive

https://github.com/microsoft/vcpkg/pull/11204

Binary caching on a NuGet server

Binary caching will also work with existing NuGet servers like Azure Artifact Storage

Note: though storage format is NuGet, packages cannot be consumed directly into MSBuild projects

(use vcpkg export command instead)

Versioning (learn more)

 The good: vcpkg gives you a set of libraries that will work together

without the user having to know which versions are compatible

 The bad: the user doesn’t easily control the version of a library

vcpkg gives them

 Solution: Versioning support

 Allows developers to request specific library versions

vcpkg install package zlib@1.2.11:x64-windows

https://github.com/microsoft/vcpkg/pull/11758

Package search by version

vcpkg search zlib --show-versions

zlib 1.2.11 A compression library

zlib 1.2.10 A compression library

zlib 1.2.8 A compression library

Search feature will be able to show available package versions

Manifest file: vcpkg.json (learn more)

 Problem: How to achieve consistency?
 Multiple developers on a team need the same dependencies acquired exactly the same way

 CI builds need to happen exactly the same way as local developer machine builds

 Consumers of open source software need to rebuild it the same way as the maintainers

 Solution: vcpkg will support a manifest file called vcpkg.json

 Allows developers to specify libraries, library metadata, library

versions, and more

https://github.com/microsoft/vcpkg/blob/master/docs/specifications/manifests.md

vcpkg.json example
{

"name": "pango",

"version": "1.40.11",

"port-version": 6,

"homepage": "https://ftp.gnome.org/pub/GNOME/sources/pango/",

"description": "Text and font handling library.",

"dependencies": [

"glib",

"gettext",

"cairo",

"fontconfig",

"freetype",

{

"name": "harfbuzz",

"features": ["glib"],

"platform": {

"and": [

{ "not": { "and": ["windows", "static"] } },

{ "not": "osx" }] } }]

}

Bring your own libraries to vcpkg – package federation

 Eventually, vcpkg.json will allow the user to specify other libraries not

found in the vcpkg catalog

 This can include private/internal libraries and custom forks

 Developers will be able to define their own vcpkg ports for use

across their organization

Visual Studio / Visual Studio Code integration

 We will ship vcpkg inside the Visual Studio IDE (if a C++ workload

is installed)

 We will ship vcpkg inside the Visual Studio Code C++ extension

 More integration with these tools will be considered over time

Learn more

 vcpkg product roadmap & specs: https://aka.ms/vcpkg/roadmap
 We are looking for feedback!

 Get started with vcpkg: https://github.com/microsoft/vcpkg

https://aka.ms/vcpkg/roadmap
https://github.com/microsoft/vcpkg

