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Who I am

Computer Engineer, VC++

My C++ has served an Italian F1 Team since 2011

In 2013 I founded ++it, the Italian C++ Community

https://marcoarena.wordpress.com/marco@italiancpp.org

https://marcoarena.wordpress.com/
mailto:marco@italiancpp.org
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Can you help me?
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Task: read an int followed by a line

10
this is a great event

int num; string line;
cin >> num;
getline(cin, line);
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Task: read an int followed by a line

num = 10
line = ""

Gadget Time!
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Task: read an int followed by a line

1 0 \n t h i …

10
this is a great event
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Task: read an int followed by a line

cin >> num >> std::ws;
getline(cin, line);

getline is an unformatted function
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Is C++ hard because of such oddities?
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Some programmers when they discover such oddities
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C++ power & complexity

• Backwards-compatibility

• 0-overhead principle & fine-tuning control

• Independence from the paradigm & flexibility

• "Poor" standard library
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Stack Overflow Programming

I’m calling in sick today

because Stack Overflow

is down.
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Thoughts on 
responsibility & simplification
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Thoughts on 
responsibility => simplification
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Understanding Conceptual Integrity
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Conceptual Integrity

I will contend that conceptual integrity is the most important consideration in 
system design – it is better to have a system omit certain anomalous features 
and improvements, but to reflect one set of design ideas, than to have one that 
contains many good but independent and uncoordinated ideas.

[Brooks, 1975] 

E.g. On Linux, everything is a file
On Lisp, everything is a list
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RAII: Resource Acquisition is Initialization

FILE* f = fopen(…);

//…

fclose(f);

}

File f(…);

//…

} // automatic fclose
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RAII is possible thanks to 3 guarantees:

•Destruction happens also in case of exceptions

•Order of destruction is known (like a stack, LIFO)

•Default destructors are automatically generated

RAII: Resource Acquisition is Initialization
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Every dynamic resource managament could
(should) be done in terms of RAII
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From Iterators to Ranges

int sum = accumulate(

ints(1)

| transform([](int i){ return i*i; })

| take(10)

, 0);
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Task: write a stream formatting text for OutpuDebugString

class debug_stream : public std::ostringstream
{
public:

template<typename T>
friend debug_stream& operator<<(debug_stream& os, const T& s);

};

template<typename T>
debug_stream& operator<<(debug_stream& os, const T& s)
{

(ostringstream&) os << s;
OutputDebugString(os.str());
os.str(""); // clear
return os;

}
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What’s the problem?

debug_stream dbg;

dbg << "magic number " << 100 << endl;



Italian C++ Conference 2016 – Milano, 14 Maggio 2016

What is a stream?

A stream is a serial interface to any storage medium/device

Underneath the stream, a buffer is coupled with the device

Stream buffers decouple streams from devices
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The solution: a custom stream buffer

class dbgview_buffer : public std::stringbuf
{
public:

int sync() override
{

OutputDebugString(str().c_str());
str(""); // clear current buffer
return 0; // ok

}
};
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The solution: a custom stream buffer

dbgview_buffer buf;

ostream dbgview(&buf);

dbgview << "Formatted string with numbers " 

<< 2 << " and " 

<< setprecision(3) << 10.001 

<< endl; // will call «sync»
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Conceptual Integrity: "Language of the Language"

Understanding Conceptual Integrity is mandatory not only to design 
effective APIs but also to use the language in the proper way.

Conceptual Integrity arises from language constructs
(e.g. streams and buffers, iterators),

and also from language idioms (e.g. RAII, move semantics).

Conceptual Integrity evolves along with the language (e.g. ranges).
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Embracing the "new C++"
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2011: 
are you aware of the new C++?
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2011: Start re-thinking in C++

•New features and idioms

•A few modern guidelines (Meyers, Sutter – articles/slides)

•Visual Studio 2010 already supporting TR1 and some extensions

• It has been an investment for many companies
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Every new feature comes with a price

auto number = 10; // auto = int

auto& ref = i; // auto = int (auto& = int&)

auto what = ref; // auto = int
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Every new feature comes with a price

decltype(auto) look_up_a_string_1() 
{ 

auto str = lookup1(); 
return str; 

}

decltype(auto) look_up_a_string_2() 
{ 

auto str = lookup1(); 
return (str); // ops

}
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Every new feature comes with a price:

Learning and Awareness
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E.g.

Putting in production a new cutting edge feature

of C++1z may be risky if someone of the team is

not aware of that feature
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Our experience since 2011/2012

•Recurring 1h/2h meetings on C++11, for some time

•Pair-programming: {fluent on C++11, less fluent on C++11}

•Setting up some team rules and doing reviews

•Some time spent on migrating (some) old code
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Was it worth?

Starting a tech startup with C++
https://medium.com/swlh/starting-a-tech-startup-with-c-6b5d5856e6de

https://medium.com/swlh/starting-a-tech-startup-with-c-6b5d5856e6de
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Don’t reinvent the wheel!
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Adding enables removing
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Reinventing language semantics

class CarSettings
{
public:

CarSettings() : someFlag(false) {}

CarSettings(const CarSettings& other)
: description(other.description), someFlag(other.someFlag),

{}

private:
string description;
bool someFlag;

};
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Reinventing language semantics

class CarSettings
{
public:

CarSettings() : someFlag(false) {}

CarSettings(const CarSettings& other)
: description(other.description), someFlag(other.someFlag),
coeffs(other.coeffs)

{}

private:
string description;
bool someFlag;
double coeffs[MAGIC_CONSTANT];

};
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Reinventing language semantics

class CarSettings
{
public:

CarSettings() : someFlag(false) {}

CarSettings(const CarSettings& other)
: description(other.description), someFlag(other.someFlag)

{
memcpy(coeffs, other.coeffs, sizeof(coeffs));

}

private:
string description;
bool someFlag;
double coeffs[MAGIC_CONSTANT];

};
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Using language semantics

class CarSettings

{

public:

// other functions (no special operators)

private:

string description;

bool someFlag = false;

double coeffs[MAGIC_CONSTANT];

};
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But I need special operators now…

class CarSettings

{

public:

CarSettings(int N) : coeffs(new double[N]()) {}

// dtor?

private:

string description;

bool someFlag = false;

double* coeffs;

};
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1st reason destructors are hard to write

Can’t remember how to type a tilde!
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1st reason destructors are hard to write
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Applying Conceptual Integrity

class CarSettings

{

public:

// other functions (no special operators)

private:

string description;

bool someFlag = false;

vector<double> coeffs; // or something else

};
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(Re)Writing RAII wrappers

Library lib(name);

lib.fun1(...);

...

} // ~Library: Unload
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(Re)Writing RAII wrappers

struct Library {

Library(const wstring& path) : handle(LoadLibrary(path.c_str()) {}

~Library() { FreeLibrary(handle); }

// what about copy/move?

// binding functions (GetProcAddress...)

private:

HANDLE handle;

};
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Exploiting the STL

struct Library {

Library(const wstring& path) 

: handle(LoadLibrary(path.c_str()) {}

// clear semantics: this wrapper is movable

// binding functions (GetProcAddress...)

private:

unique_ptr<HANDLE, unloader> handle;

};

struct unloader{

using pointer = HANDLE;

void operator()(pointer h) const {

FreeLibrary(h);

}

};
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The Standard Library has things

you (maybe) don’t know.
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Challenge:

search the STL/the language/the ecosystem

learn one new thing /investigate one aspect of C++

get results

share the full experience with the team and/or the ecosystem
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Let me start
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Facing factotum pointers



Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// what is ptr?
void f (T* ptr) 
{

... 
}
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// is ptr an array?
void f (T* ptr) 
{

ptr[1]; 
}
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// is ptr a position?
void f (T* ptr) 
{

ptr++; // next
}
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// should I check ptr?
void f (T* ptr) 
{

if (ptr) {
...

}
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// do I expect a not-null ptr? 
void f (T* ptr); 

if (ptr)
f(ptr);
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// should I delete ptr?
void f (T* ptr) 
{

delete ptr;
}
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// will my caller delete ptr?

T* f (...) 
{

return new T(...);
}
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// is ptr dangling?
void f (T* ptr) 
{

ptr->... // boom
}
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Factotum pointers

Quick to use (when you write the code…)

Programmers intention not so clear

Comments and variable names try to replace types

Poor information for the compiler/other tools
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Can we use types instead of pointers?

Use T* either to indicate a position or a nullable reference

Let’s discuss on the «nullable reference» in a few slides…

Let’s state a simple rule:
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// gentle C-style array
void f (T* arr, int N) 
{

...
}
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void f (span<T> arr) 
{

...
}
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span<T> will be in C++17

A non-owning range of elements

Cheap to copy (as efficient as passing two pointers or 

one pointer and an integer count)

Accessing elements is potentially checked

span<int> sp(buff, 5);
sp[10];   // potentially checked
sp[index];  // potentially checked
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// I own the sequence
void f (vector<T>& arr) 
{

...
}
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// I own the sequence
void f (array<T, N>& arr) 
{

...
}
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// who owns ptr?
void f (T* ptr) 
{

...
}
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// unique ownership
void f (unique_ptr<T> obj) 
{

...
}
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// shared ownership
void f (const shared_ptr<T>&) 
{

...
}
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// modern factory
unique_ptr<T> f (...) 
{

...
}
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What’s the matter with nullptr?

f (T* ptr) // nullptr is an option

g (T& ref) // nullptr is not an option

T someObj;

f (&someObj); // ok

g (someObj); // ok
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What’s the matter with nullptr?

f (T* ptr) // nullptr is an option

g (T& ref) // nullptr shouldn’t be an option

T* ptr = nullptr;

f (ptr); // ok

g (*ptr); // UB
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What’s the matter with nullptr?

f (T* ptr) // nullptr is an option

g (unique_ptr<T> ptr) // nullptr is an option

h (shared_ptr<T> ptr) // nullptr is an option
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What’s the matter with nullptr?

f (?<T>)

g (?<unique_ptr<T>>)

nullptr will never be an option
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What’s the matter with nullptr?

f (not_null<T>)

g (not_null<unique_ptr<T>>)

nullptr will never be an option
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not_null<PtrType>

// the caller has to ensure ptr is not null

void f(not_null<int*> ptr);

// the function ensures to return not null

not_null<unique_ptr<int>> g();



Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Defeating factotum pointers

Use T* either to indicate a position or a nullable reference,
use types and language constructs otherwise.

// position or nullable reference
T*

// views

T& reference_wrapper<T> not_null<T>

// range views
span<T> string_span<T> zstring

// owners
unique_ptr<T> shared_ptr<T>

vector<T> array<T, N> ...(many others)

optional<T> any<T>

RAII
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Changing by constraining
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We cannot radically change C++,

instead we can change our way to code in 

C++.
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We cannot radically change C++,

instead we can constrain our way to code in 

C++.
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C++ Core Guidelines

Ecosystem

Aim to help people to use modern C++ effectively.

Rules designed to be supported by an analysis tool.

github.com/isocpp/CppCoreGuidelines

https://github.com/isocpp/CppCoreGuidelines
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C++ Core Guidelines – Safety Profiles

Profile: set of deterministic and portably 
enforceable rules that are designed to 

achieve a specific guarantee.

Kind of standard static analysis
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Example: Lifetime Profile

void Danger(vector<int>& v)
{

auto* p = v[0];
if (SomeCondition)
{

v.push_back(23);
}
*p = 10; // may be "boom"...

}

warning C26400 Do not dereference an invalid pointer (lifetimes rule 1). 'p' was invalidated 

at line 8 by 'std::vector<int,std::allocator<int> >::push_back'. Path trace: 4, 6, 7, 8, 9, 11, 13, 14

http://tinyurl.com/zzvfjdb

http://tinyurl.com/zzvfjdb
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For 25+ years, we have learned good

things and bad things about C++.

We have understood good constraints and 

idioms for getting the best from it.
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Guidelines & Safety Profiles are 

standard idioms of responsibility, 

designed to be automatically checked.
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The future of C++ is basically: 

language + library (as usual)

The future of C++ is basically: 

language + library (as usual)

+ commitment to responsibility
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We have a great language.

We have a great responsibility.
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Thank you
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Questions?


