
www.italiancpp.org

Italian C++ Conference 2016
14 Maggio, Milano

With great C++
comes great responsibility
Marco Arena

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Who I am

Computer Engineer, VC++

My C++ has served an Italian F1 Team since 2011

In 2013 I founded ++it, the Italian C++ Community

https://marcoarena.wordpress.com/marco@italiancpp.org

https://marcoarena.wordpress.com/
mailto:marco@italiancpp.org

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Can you help me?

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Task: read an int followed by a line

10
this is a great event

int num; string line;
cin >> num;
getline(cin, line);

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Task: read an int followed by a line

num = 10
line = ""

Gadget Time!

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Task: read an int followed by a line

1 0 \n t h i …

10
this is a great event

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Task: read an int followed by a line

cin >> num >> std::ws;
getline(cin, line);

getline is an unformatted function

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Is C++ hard because of such oddities?

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Some programmers when they discover such oddities

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

C++ power & complexity

• Backwards-compatibility

• 0-overhead principle & fine-tuning control

• Independence from the paradigm & flexibility

• "Poor" standard library

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Stack Overflow Programming

I’m calling in sick today

because Stack Overflow

is down.

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Thoughts on
responsibility & simplification

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Thoughts on
responsibility => simplification

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Understanding Conceptual Integrity

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Conceptual Integrity

I will contend that conceptual integrity is the most important consideration in
system design – it is better to have a system omit certain anomalous features
and improvements, but to reflect one set of design ideas, than to have one that
contains many good but independent and uncoordinated ideas.

[Brooks, 1975]

E.g. On Linux, everything is a file
On Lisp, everything is a list

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

RAII: Resource Acquisition is Initialization

FILE* f = fopen(…);

//…

fclose(f);

}

File f(…);

//…

} // automatic fclose

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

RAII is possible thanks to 3 guarantees:

•Destruction happens also in case of exceptions

•Order of destruction is known (like a stack, LIFO)

•Default destructors are automatically generated

RAII: Resource Acquisition is Initialization

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Every dynamic resource managament could
(should) be done in terms of RAII

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

From Iterators to Ranges

int sum = accumulate(

ints(1)

| transform([](int i){ return i*i; })

| take(10)

, 0);

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Task: write a stream formatting text for OutpuDebugString

class debug_stream : public std::ostringstream
{
public:

template<typename T>
friend debug_stream& operator<<(debug_stream& os, const T& s);

};

template<typename T>
debug_stream& operator<<(debug_stream& os, const T& s)
{

(ostringstream&) os << s;
OutputDebugString(os.str());
os.str(""); // clear
return os;

}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

What’s the problem?

debug_stream dbg;

dbg << "magic number " << 100 << endl;

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

What is a stream?

A stream is a serial interface to any storage medium/device

Underneath the stream, a buffer is coupled with the device

Stream buffers decouple streams from devices

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

The solution: a custom stream buffer

class dbgview_buffer : public std::stringbuf
{
public:

int sync() override
{

OutputDebugString(str().c_str());
str(""); // clear current buffer
return 0; // ok

}
};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

The solution: a custom stream buffer

dbgview_buffer buf;

ostream dbgview(&buf);

dbgview << "Formatted string with numbers "

<< 2 << " and "

<< setprecision(3) << 10.001

<< endl; // will call «sync»

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Conceptual Integrity: "Language of the Language"

Understanding Conceptual Integrity is mandatory not only to design
effective APIs but also to use the language in the proper way.

Conceptual Integrity arises from language constructs
(e.g. streams and buffers, iterators),

and also from language idioms (e.g. RAII, move semantics).

Conceptual Integrity evolves along with the language (e.g. ranges).

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Embracing the "new C++"

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

2011:
are you aware of the new C++?

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

2011: Start re-thinking in C++

•New features and idioms

•A few modern guidelines (Meyers, Sutter – articles/slides)

•Visual Studio 2010 already supporting TR1 and some extensions

• It has been an investment for many companies

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Every new feature comes with a price

auto number = 10; // auto = int

auto& ref = i; // auto = int (auto& = int&)

auto what = ref; // auto = int

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Every new feature comes with a price

decltype(auto) look_up_a_string_1()
{

auto str = lookup1();
return str;

}

decltype(auto) look_up_a_string_2()
{

auto str = lookup1();
return (str); // ops

}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Every new feature comes with a price:

Learning and Awareness

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

E.g.

Putting in production a new cutting edge feature

of C++1z may be risky if someone of the team is

not aware of that feature

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Our experience since 2011/2012

•Recurring 1h/2h meetings on C++11, for some time

•Pair-programming: {fluent on C++11, less fluent on C++11}

•Setting up some team rules and doing reviews

•Some time spent on migrating (some) old code

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Was it worth?

Starting a tech startup with C++
https://medium.com/swlh/starting-a-tech-startup-with-c-6b5d5856e6de

https://medium.com/swlh/starting-a-tech-startup-with-c-6b5d5856e6de

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Don’t reinvent the wheel!

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Adding enables removing

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Reinventing language semantics

class CarSettings
{
public:

CarSettings() : someFlag(false) {}

CarSettings(const CarSettings& other)
: description(other.description), someFlag(other.someFlag),

{}

private:
string description;
bool someFlag;

};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Reinventing language semantics

class CarSettings
{
public:

CarSettings() : someFlag(false) {}

CarSettings(const CarSettings& other)
: description(other.description), someFlag(other.someFlag),
coeffs(other.coeffs)

{}

private:
string description;
bool someFlag;
double coeffs[MAGIC_CONSTANT];

};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Reinventing language semantics

class CarSettings
{
public:

CarSettings() : someFlag(false) {}

CarSettings(const CarSettings& other)
: description(other.description), someFlag(other.someFlag)

{
memcpy(coeffs, other.coeffs, sizeof(coeffs));

}

private:
string description;
bool someFlag;
double coeffs[MAGIC_CONSTANT];

};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Using language semantics

class CarSettings

{

public:

// other functions (no special operators)

private:

string description;

bool someFlag = false;

double coeffs[MAGIC_CONSTANT];

};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

But I need special operators now…

class CarSettings

{

public:

CarSettings(int N) : coeffs(new double[N]()) {}

// dtor?

private:

string description;

bool someFlag = false;

double* coeffs;

};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

1st reason destructors are hard to write

Can’t remember how to type a tilde!

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

1st reason destructors are hard to write

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Applying Conceptual Integrity

class CarSettings

{

public:

// other functions (no special operators)

private:

string description;

bool someFlag = false;

vector<double> coeffs; // or something else

};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

(Re)Writing RAII wrappers

Library lib(name);

lib.fun1(...);

...

} // ~Library: Unload

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

(Re)Writing RAII wrappers

struct Library {

Library(const wstring& path) : handle(LoadLibrary(path.c_str()) {}

~Library() { FreeLibrary(handle); }

// what about copy/move?

// binding functions (GetProcAddress...)

private:

HANDLE handle;

};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Exploiting the STL

struct Library {

Library(const wstring& path)

: handle(LoadLibrary(path.c_str()) {}

// clear semantics: this wrapper is movable

// binding functions (GetProcAddress...)

private:

unique_ptr<HANDLE, unloader> handle;

};

struct unloader{

using pointer = HANDLE;

void operator()(pointer h) const {

FreeLibrary(h);

}

};

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

The Standard Library has things

you (maybe) don’t know.

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Challenge:

search the STL/the language/the ecosystem

learn one new thing /investigate one aspect of C++

get results

share the full experience with the team and/or the ecosystem

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Let me start

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Facing factotum pointers

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// what is ptr?
void f (T* ptr)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// is ptr an array?
void f (T* ptr)
{

ptr[1];
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// is ptr a position?
void f (T* ptr)
{

ptr++; // next
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// should I check ptr?
void f (T* ptr)
{

if (ptr) {
...

}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// do I expect a not-null ptr?
void f (T* ptr);

if (ptr)
f(ptr);

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// should I delete ptr?
void f (T* ptr)
{

delete ptr;
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// will my caller delete ptr?

T* f (...)
{

return new T(...);
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// is ptr dangling?
void f (T* ptr)
{

ptr->... // boom
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Factotum pointers

Quick to use (when you write the code…)

Programmers intention not so clear

Comments and variable names try to replace types

Poor information for the compiler/other tools

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Can we use types instead of pointers?

Use T* either to indicate a position or a nullable reference

Let’s discuss on the «nullable reference» in a few slides…

Let’s state a simple rule:

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// gentle C-style array
void f (T* arr, int N)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

void f (span<T> arr)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

span<T> will be in C++17

A non-owning range of elements

Cheap to copy (as efficient as passing two pointers or

one pointer and an integer count)

Accessing elements is potentially checked

span<int> sp(buff, 5);
sp[10]; // potentially checked
sp[index]; // potentially checked

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// I own the sequence
void f (vector<T>& arr)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// I own the sequence
void f (array<T, N>& arr)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// who owns ptr?
void f (T* ptr)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// unique ownership
void f (unique_ptr<T> obj)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// shared ownership
void f (const shared_ptr<T>&)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

// modern factory
unique_ptr<T> f (...)
{

...
}

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

What’s the matter with nullptr?

f (T* ptr) // nullptr is an option

g (T& ref) // nullptr is not an option

T someObj;

f (&someObj); // ok

g (someObj); // ok

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

What’s the matter with nullptr?

f (T* ptr) // nullptr is an option

g (T& ref) // nullptr shouldn’t be an option

T* ptr = nullptr;

f (ptr); // ok

g (*ptr); // UB

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

What’s the matter with nullptr?

f (T* ptr) // nullptr is an option

g (unique_ptr<T> ptr) // nullptr is an option

h (shared_ptr<T> ptr) // nullptr is an option

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

What’s the matter with nullptr?

f (?<T>)

g (?<unique_ptr<T>>)

nullptr will never be an option

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

What’s the matter with nullptr?

f (not_null<T>)

g (not_null<unique_ptr<T>>)

nullptr will never be an option

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

not_null<PtrType>

// the caller has to ensure ptr is not null

void f(not_null<int*> ptr);

// the function ensures to return not null

not_null<unique_ptr<int>> g();

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Defeating factotum pointers

Use T* either to indicate a position or a nullable reference,
use types and language constructs otherwise.

// position or nullable reference
T*

// views

T& reference_wrapper<T> not_null<T>

// range views
span<T> string_span<T> zstring

// owners
unique_ptr<T> shared_ptr<T>

vector<T> array<T, N> ...(many others)

optional<T> any<T>

RAII

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Changing by constraining

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

We cannot radically change C++,

instead we can change our way to code in

C++.

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

We cannot radically change C++,

instead we can constrain our way to code in

C++.

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

C++ Core Guidelines

Ecosystem

Aim to help people to use modern C++ effectively.

Rules designed to be supported by an analysis tool.

github.com/isocpp/CppCoreGuidelines

https://github.com/isocpp/CppCoreGuidelines

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

C++ Core Guidelines – Safety Profiles

Profile: set of deterministic and portably
enforceable rules that are designed to

achieve a specific guarantee.

Kind of standard static analysis

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Example: Lifetime Profile

void Danger(vector<int>& v)
{

auto* p = v[0];
if (SomeCondition)
{

v.push_back(23);
}
*p = 10; // may be "boom"...

}

warning C26400 Do not dereference an invalid pointer (lifetimes rule 1). 'p' was invalidated

at line 8 by 'std::vector<int,std::allocator<int> >::push_back'. Path trace: 4, 6, 7, 8, 9, 11, 13, 14

http://tinyurl.com/zzvfjdb

http://tinyurl.com/zzvfjdb

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

For 25+ years, we have learned good

things and bad things about C++.

We have understood good constraints and

idioms for getting the best from it.

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Guidelines & Safety Profiles are

standard idioms of responsibility,

designed to be automatically checked.

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

The future of C++ is basically:

language + library (as usual)

The future of C++ is basically:

language + library (as usual)

+ commitment to responsibility

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

We have a great language.

We have a great responsibility.

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Thank you

Italian C++ Conference 2016 – Milano, 14 Maggio 2016

Questions?

