
www.italiancpp.org

Going native with less
coupling
Dependency Injection in C++

Italian C++ Community

OO (?) Design – Style 1

i=2

CONTROLLER /
MANAGER

Dumb
object

Dumb
object

Dumb
object

Dumb
object

Dumb
object

Dumb
object

Dumb
object

Dumb
object

Italian C++ Community

(Real) OO design – Style 2

i=3

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Smart
Object

Italian C++ Community

OO Architecture Benefits

i=4

Italian C++ Community i=5

In a True Modular Architecture, wiring is critical

Italian C++ Community

The Wiring Issue

 When you've got a Good Architecture, you deal with
requirements changes by adding/removing/substituting objects

 So, we need a simple way to:
 Change the type of the objects

 Create new objects

 Modify the wiring of the objects

i=6

Italian C++ Community i=7

Example taken from:
Carlo Pescio's blog – March 2012

Italian C++ Community

First Design

i=8

MinePlant

SumpPump

+Drain()

PumpEngine

+On()
+Off()

DigitalOutput

+Write()

GasSensor
<<interface>>

+IsCritical()

GasAlarm

+Watch()

1..*

Alarm

+On()
+Off()

SafeEngine

Italian C++ Community

Requirements Change

i=9

MinePlant

SumpPump

+Drain()

PumpEngine

+On()
+Off()

DigitalOutput

+Write()

GasSensor
<<interface>>

+IsCritical()

GasAlarm

+Watch()

1..*

Alarm

+On()
+Off()

SafeEngine

Italian C++ Community

Extension
 The design is robust: I only need to add a class

 But…

 Who creates SafeEngine instead of PumpEngine?

 How does SafeEngine get the pointer to the
 GasSensor (the same used by GasAlarm)?

i=10

Italian C++ Community

Solution #1: Local Creation

Each class creates its own
dependencies

i=11

Italian C++ Community i=12

MinePlant

SumpPump

+Drain()

PumpEngine

+On()
+Off()

DigitalOutput

+Write()

GasSensor
<<interface>>

+IsCritical()

GasAlarm

+Watch()

1..*

Alarm

+On()
+Off()

SafeEngine <<create>>

Italian C++ Community

Solution #1: Consequences

 The SumpPump constructor creates a SafeEngine
instead of a PumpEngine.

 … but SafeEngine needs a pointer to the GasSensor
instance already used by GasAlarm.

 So, we must pass it as a parameter to SumpPump
constructor.

i=13

Italian C++ Community

Solution #1: Properties

 If I need to change the concrete
type, I have to modify the client.

 It's difficult to reuse the same client
class (even in the same application).

i=14

Italian C++ Community

Solution #1: Summary

SafeEngine class added
SumpPump constructor modified
MinePlant modified

i=15

Italian C++ Community

Solution #2: Factory

(not the GoF factory)

Create objects without exposing
the instantiation logic to the client

i=16

Italian C++ Community i=17

<<create>>

Italian C++ Community

Solution #2: Consequences
 The SumpPump constructor takes a Factory as
parameter.

 PumpEngineFactory instantiates a a PumpEngine.

 SafeEngineFactory instantiates a SafeEngine.

 SafeEngine still needs a pointer to the GasSensor
instance already used by GasAlarm, so we must pass
it to the SafeEngineFactory constructor.

i=18

Italian C++ Community

Solution #2: Summary

SafeEngine class added
SafeEngineFactory added
MinePlant modified

i=19

Italian C++ Community

Solution #3: Service Locator

It’s a registry containing the
instances to use

i=20

Italian C++ Community

Solution #3: Service Locator

i=21

class ServiceLocator

{

public:

 ServiceLocator& Instance();

 shared_ptr< PumpEngine > Engine();

 void Engine(const shared_ptr< PumpEngine >& engine);

private:

 ...

};

Italian C++ Community

Solution #3: Service Locator

i=22

// MinePlant:

auto e =

 make_shared< SafeEngine >(engineOutput, gasSensor);

ServiceLocator::Instance().Engine(e);

// SumpPump:

SumpPump::SumpPump() :

 engine(ServiceLocator::Instance().Engine())

{

}

Italian C++ Community

Solution #3: Properties

Clients aware of the locator

Dependencies not explicit / evident

Dependencies not checked by compiler

i=23

Italian C++ Community

Solution #3: Summary

 SafeEngine class added

 MinePlant modified

i=24

Italian C++ Community

Solution #4: Dependency Injection

 Dependency Injection is when
you have something setting the
dependencies for you.

i=25

Italian C++ Community

Solution #4: Dependency Injection

Classes don't create their own dependencies

They're passed from outside

i=26

Italian C++ Community

Dependency Injection

i=27

auto gasSensor = ...

auto alarmOutput = make_shared<DigitalOutput>("/dev/ttyS0");

auto alarm = make_shared<Alarm>(alarmOutput);

auto gasAlarm = make_shared<GasAlarm>(gasSensor,alarm);

auto engineOutput = make_shared<DigitalOutput>("/dev/ttyS1");

auto engine = make_shared<PumpEngine>(engineOutput);

auto pump = make_shared<SumpPump>(engine);

Italian C++ Community

Dependency Injection

i=28

auto gasSensor = ...

auto alarmOutput = make_shared<DigitalOutput>("/dev/ttyS0");

auto alarm = make_shared<Alarm>(alarmOutput);

auto gasAlarm = make_shared<GasAlarm>(gasSensor,alarm);

auto engineOutput = make_shared<DigitalOutput>("/dev/ttyS1");

// auto engine = make_shared<PumpEngine>(engineOutput);

auto engine = make_shared<SafeEngine>(engineOutput,gasSensor);

auto pump = make_shared<SumpPump>(engine);

Italian C++ Community

Solution #4: Properties

 Complete separation between:

 application logic (classes)

 wiring (main/builder)

i=29

Italian C++ Community

Solution #4: Summary

SafeEngine class added
MinePlant modified (one liner)

i=30

Italian C++ Community i=31

SafeEngine must be added anyway.
… can we remove the one liner in MinePlant?

Italian C++ Community i=32

moving creation and wiring outside the code,
in a configuration file

Italian C++ Community

Why?

 To easily get extensibility/contraction

 (without having to touch zillion files and
recompile everything)

i=33

Italian C++ Community

From Identifiers to Strings

Improving Previous Solution:

 Objects creation from string

 Objects identified by name

 Objects connected by name

i=34

Italian C++ Community

Run-time Reflection Missing…

Create("Foo") vs new Foo

Enumerate the dependencies

“Inject” the right object address in a
class dependency

i=35

Italian C++ Community

Solution #5: Dependency Injection +

 Dependency Injection is when you
have something setting the
dependencies for you.

 …this something is usually a
framework.

i=36

Italian C++ Community

Existing libraries (C++)

i=37

 Main issues:
 Compile time injection only

 Code generators needed

Italian C++ Community

Enter Wallaroo Library

i=38

wallaroo.googlecode.com

wallaroo
C++ Dependency Injection

Italian C++ Community

Creating objects

i=39

Catalog catalog;

...

catalog.Create("alarmOutput","DigitalOutput","/dev/ttyS0");

catalog.Create("alarm","Alarm");

catalog.Create("gasAlarm","GasAlarm");

catalog.Create("engineOutput","DigitalOutput","/dev/ttyS1");

catalog.Create("pump","SumpPump");

catalog.Create("engine","SafeEngine");

Italian C++ Community

Creating objects (from cfg)

i=40

<parts>

 <part>

 <name>pump</name>

 <class>SumpPump</class>

 </part>

 <part>

 <name>engine</name>

 <class>SafeEngine</class>

 </part>

</parts>

...

Catalog catalog;

XmlConfiguration

 file("wiring.xml");

file.Fill(catalog);

...

Italian C++ Community

Object lookup by name

i=41

shared_ptr< SumpPump > pump = catalog["pump"];

Italian C++ Community

Connect Things by name (DSL)

i=42

Catalog catalog;

// fill catalog

...

use(catalog["alarmOutput"]).as("out").of(catalog["alarm"]);

use(catalog["safeEngine"]).as("engine").of(catalog["pump"]);

Italian C++ Community

Connect Things by name (DSL)

i=43

Catalog catalog;

// fill catalog

...

wallaroo_within(catalog)

{

 use("alarmOutput").as("out").of("alarm");

 use("safeEngine").as("engine").of("pump");

}

Italian C++ Community

Connect Things by name (from cfg)

i=44

<wiring>

 <wire>

 <source>alarm</source>

 <dest>alarmOutput</dest>

 <collaborator>out</collaborator>

 </wire>

 <wire>

 <source>pump</source>

 <dest>safeEngine</dest>

 <collaborator>engine</collaborator>

 </wire>

</wiring>

Catalog catalog;

...

XmlConfiguration

 file("wiring.xml");

file.Fill(catalog);

catalog.CheckWiring();

...

Italian C++ Community

Class Declaration

i=45

#include "wallaroo/registered.h"

using namespace wallaroo;

class SumpPump : public Part

{

public:

 SumpPump(int id);

private:

 Collaborator< Engine > engine;

};

Italian C++ Community

Class Registration

i=46

WALLAROO_REGISTER(SumpPump, int)

SumpPump::SumpPump(int id) :

 engine("engine", RegistrationToken())

{

...

}

// other methods definition here
...

Italian C++ Community

Shared Libraries – AKA plugins (code)

i=47

Plugin::Load("safeengine" + Plugin::Suffix());
// Plugin::Suffix() expands to .dll or .so according to the OS

Italian C++ Community

Shared Libraries – AKA plugins (cfg)

i=48

<plugins>

 <shared>safeengine</shared>

</plugins>

Catalog catalog;

XmlConfiguration file("wiring.xml");
// load the shared libraries specified in the configuration file:
file.LoadPlugins();
file.Fill(catalog);

// throws a WiringError exception if any plug is missed:
catalog.CheckWiring();

Italian C++ Community

Collections

i=49

class Car : public wallaroo::Part

{

 ...

private:

 Collaborator< Engine > engine;

 Collaborator< AirConditioning, optional > airConditioning;

 Collaborator< Airbag, collection > airbags;

 Collaborator< Speaker, collection, std::list > speakers;

 Collaborator< Seat, bounded_collection< 2, 6 > > seats;

};

Italian C++ Community

Checks

i=50

if (!catalog.IsWiringOk())

{

 // error handling
}

catalog.CheckWiring() // throws exception

Italian C++ Community

Initialization

i=51

class Part

{

...

public:

 virtual void Init() {}

...

};

catalog.Init() // calls Part::Init for each part in catalog

Italian C++ Community

Wallaroo Internals

 WALLAROO_REGISTER declares a static object.

 Its constructor creates a factory and puts it in a table, with the class
name as key.

 Catalog::Create uses the factory to put a new instance in the catalog.

 wallaroo::Part has a table of <name, Collaborator>

i=52

Italian C++ Community

Wallaroo Internals

 shared_ptr< Foo > foo = catalog[“foo”];

 catalog[“foo”] returns a class that defines operator
shared_ptr< T >()

 Collaborator uses weak_ptr for the dependency

 Collaborator defines operator shared_ptr() and operator->()

i=53

Italian C++ Community

Wallaroo Internals

i=54

wallaroo_within(catalog)

{

 use("alarmOutput").as("out").of("alarm");

 use("safeEngine").as("engine").of("pump");

}

for (Context c(catalog);c.FirstTime();c.Terminate())

{

 use("alarmOutput").as("out").of("alarm");

 use("safeEngine").as("engine").of("pump");

}

Italian C++ Community

Wallaroo Strengths
 Lightweight (header file only)

 Portable

 Type Safe

 DSL syntax for object creation and wiring

 Configuration driven wiring (xml and json)

 Shared library support (plugin)

 C++11 or boost interface

 No code generators

i=55

Italian C++ Community

Design is a balance of forces

Intrusive VS Non Intrusive

Non Intrusive Solutions can manage existing classes but
require code generators for configuration driven wiring

i=56

Italian C++ Community

Design is a balance of forces

Configuration-driven wiring

VS static type checking

By moving the wiring in a configuration file, we give up the
static type checking.

But it’s ok, since you build your system at startup.

i=57

Italian C++ Community

Action Points

 Real OOD (no controllers / managers)

 Manual Dependency Injection

 Wallaroo (configuration-drive wiring)

i=58

Italian C++ Community

References & Credits

 Me: @DPallastrelli

 Me: it.linkedin.com/in/pallad

 Rate me: https://joind.in/12277

 Wallaroo: wallaroo.googlecode.com

i=59

 MinePlant example from Carlo Pescio's blog (http://www.carlopescio.com/2012/03/life-
without-controller-case-1.html)

 Wiring Picture: By Gael Mace (Own work (Personal photograph))

[CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons

http://twitter.com/#!/dpallastrelli
it.linkedin.com/in/pallad
it.linkedin.com/in/pallad
https://joind.in/12277
https://joind.in/12277
https://joind.in/12277
wallaroo.googlecode.com

